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ABSTRACT

We explain an algorithm for finding a boundary link Seifert matrix for a given
multivariable Alexander polynomial. The algorithm depends on several choices and
therefore makes it possible to find non-equivalent Seifert matrices for a given Alexander
polynomial.
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1. Introduction
1.1. Algebraic statement

We call A = (Aij)ij=1,..m a (boundary link) Seifert matrix if A is a matrix with
entries A;; which are (n; x nj)-matrices over Z such that A;; = A%, for i # j and
det(A;; — AL) =1 (for more details, cf. [10, 14]). Note that the n; are necessarily

even numbers. Set
T:= dlag t17...7t17...7tm7...,tm
N—— N——

ni Mm,

then define the Alexander polynomial of A to be
A(A) := det(T) "2 det(TA — A') € A, == Z[tF, ... tE)].
This polynomial has the following well-known properties which can easily be verified
from the definitions.
A(A)(L,...,1) =1,
A(A) (1, ty) = AA) ().
Now assume that A is a polynomial with the above properties. The goal of

this paper is to give an algorithm for finding a Seifert matrix A in terms of the
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coefficients of A such that A(A) = A. In the case m = 1, i.e. the case of Seifert
matrices for knots, an algorithm has been found by Seifert (cf. [1, 19]).

1.2. Topological motivation

We quickly recall how boundary link Seifert matrices appear in link theory. An
m-link L = Ly U---U L,, C $%*3 is a smooth embedding of m disjoint oriented
(4¢g + 1)-spheres. A boundary link is a link which has m disjoint Seifert manifolds,
i.e. there exist m disjoint oriented (4q + 2)-submanifolds Fi,. .., F,, C S$%*3 such
that O(F;) = L;,i = 1,...,m. One of the main tools for studying boundary links is
the Seifert form

Haq41(F) x Hzq1(F) — Z
(a,b) — lk(a,by)

where b, means that we push a representative of b into S4¢*3\ F along the pos-
itive normal direction of F'. More precisely, we can find an orientation preserving
embedding ¢ : F' x [—1,1] — S%*3 and we define a4 = i(a,+1) and a_ = i(a, —1).

Now pick bases l; 1,...,lin, for Hogr1(F;),i=1,...,m, then l1,1,....lany,- -,
Linas- -y lmn,, form a basis for Hogi1(F) = Hoqy1(F1) @ -+ - & Hagr1(Fi). Repre-
senting the Seifert form with respect to this basis we get a boundary link Seifert
matrix (cf. [14], [10, p. 670]).

We also need the notion of an F,-link, this is a link with a map m (S¥3\L) —
F,,, where F,, denotes the free group on m generators, which sends meridians
to conjugates of the generators of F,. A Thom argument shows that there is a
one-to-one correspondence between isotopy classes of F,-links and isotopy classes
of boundary links with Seifert manifolds. It turns out that it is easier to study
F,,-links, for example the addition of F),-links is well-defined if ¢ > 1. Boundary
links and Fj,-links are the best understood links, they have been studied thor-
oughly and many of the classifying results for higher dimensional knots can be
done similarly in the context of such links (cf. [3, 10, 14]).

If L is a boundary link with m components then denote by X the universal
abelian cover of S*+3\ L, i.e. the cover induced by 71 (S*T3\L) — H;(S43\L) =

Z™. Note that H,(X) has a natural Z[Z™] = A,,-module structure.

Proposition 1.1. Let L C S*73 be a boundary link with m components, and A a
Seifert matriz of size (n1,...,Ny) for a Seifert manifold F = Fy U---U F,,. Then
there exists a short eract sequence

0 — A" /(AT — AYA", — Hogi1(X) — P — 0
where n =Y 1" n;, P is some torsion free Ap,-module. Furthermore P =0 if ¢ > 0.

We will give a quick outline of the proof which follows well-known arguments in
the knot case (cf. [13, 16]).
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Proof. Let Y = S%+3\ F. We can view X as the result of gluing Z™ copies of
Y together along Z™ copies of Fi, ..., F,,. Consider the resulting Mayer—Vietoris
sequence

s Hy(F)Q Ay — Hi(Y) @ Ay — Hi(X) — -
a; @p > (aj+t; —a;—) ®p

where a; € H;(F}). Note that fori € {1,...,4¢g+1} we have H;(Y) & H4T2~{(F) =
H;(F,L) = H;(F) by Alexander duality, Poincaré duality and a long exact sequence
argument. Pick a basis for H;(F') which gives A as a Seifert matrix for L, then give
H;(Y) the corresponding basis. An argument as in Rolfsen (cf. [16]) shows that the
map Hogi1(F) @ Ay, — Hogy1(Y) @ Ay is given by v — (AT — A')v.

If ¢ = 0 then the sequence becomes

> H(F)® A, — Hi(F)® Ay, — Hi(X) = Hy(F)®@ Ay, — Ho(Y)®@ Ay, — .

It is clear that Ker{Hy(F) ®@ A,, — Ho(Y) ® A,,} is A,,-torsion free since Hy(Y)
is A,,-torsion free (cf. also [18]).

Now consider the case ¢ > 0. We are done once we show that Hao(F) @ A, —
Hyy(Y) @ Ay =2 Ho(F) ® Ay, is injective. Picking a basis for Hay(F') and giv-
ing Ha4(Y') the corresponding basis, then we can represent this map by a matrix
B(ty,...,tm). We will proof that B(1,...,1) is in fact the identity matrix, in partic-
ular det(B) # 0. This concludes the proof of the proposition. Note that B(1,...,1)
represents the map Hag(F) — Haq(Y) given by a — aq — a—. Recall that the iso-
morphism f : H;(Y) — H??27¢(F) is induced by the linking pairing, in particular
for o € ng+2_z'(F)

flagx —a_)(o) =1k(ay —a_,0)=(ax [-1,1])-c =a-o0.

Thus under the Poincaré duality map f(as — a—) gets sent to a. O

From the theory of fitting ideals for presentation matrices (cf. [18]), it follows
that det(AT — A') is a well-defined invariant for a boundary link L up to multiplica-
tion by a unit in A,,. It is easy to see that det(T)~ = det(AT — A?) is a well-defined
invariant for boundary links, it is called the Alexander polynomial of L.

Gutierrez [7, p. 34] showed that any polynomial A(tq,...,t,) with the
properties

A(l,...,1)=1
Alty,..otm) = At 1)
is the Alexander polynomial of a boundary link in dimension 1, in particular there
exists a boundary link Seifert matrix A with A(A) = A. But it is difficult to find

an explicit boundary link Seifert matrix, which would be important to compute
further invariants.
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Remark. Farber [5] and Garoufalidis and Levine [6] defined non-commutative
invariants for boundary links which can be viewed as generalizations of the
Alexander polynomial of a knot. Farber also proves a realization theorem.

1.3. S-equivalence class of Seifert matrices

In the following we will call a matrix P block diagonal, if it commutes with T,
equivalently if P =P, @ -+ ® P, where P; is a (n; X n;)-matrix.

The S-equivalence of Seifert matrices is the equivalence relation generated by
the following two equivalences (for more details cf. [9, 14]).

(1) A ~ PAP" where P is a block diagonal matrix over Z with det(P) = 1.
(2) A is equivalent to any row or column enlargement or reduction of A.

Proposition 1.2 [9,14]. Any two Seifert matrices for an F,-link are S-equivalent.
Furthermore any Seifert matrix is the Seifert matrix of an Fy,-link.

There exists a similar but more complicated proposition for boundary links
(cf. [9]). It turns out that Seifert matrices for boundary links are related by
S-equivalence and an action by (cf. also [10])

A ={p: Fp — Fn|o(z:) = lixilfl for some l; € F,,,}/inner automorphism.

The groups Ay, As are trivial [8], it follows that boundary link matrices with 2 com-
ponents which are related by S-equivalence and an action by A,, are in fact S-
equivalent.

It is easy to see that if Ay, Ag are S-equivalent, then A(A;) = A(Az), this shows
again that the Alexander polynomial is an invariant for any F,-link.

We call a Seifert matrix irreducible if no row or column reductions are possible.

Proposition 1.3. (1) A Seifert matriz of size (n1,...,ny) is irreducible if and
only if
Avi
rank(A; - Aip) = ni,  Tank =n;
Ami
for all i =1,...,m. Put differently, a Seifert matriz is irreducible if and only

if the block columns and block rows have mazimal rank.
(2) If Ay, Ay are S-equivalent minimal Seifert matrices then Ay = PAs P! where
P is a block diagonal matriz over Q with det(P) # 0.

We will use this proposition to show that certain Seifert matrices are not
S-equivalent.

The statement of the proposition is well-known in the case m = 1 (cf. [20]). The
first part of the proposition is fairly straight forward to show, whereas the second
part is more difficult to prove. Using ideas of Farber [4] one can rewrite the proof of
Trotter in the general case, but this requires many details, which we will omit here.
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2. Statement of Results
2.1. Algebra

For wvy,...,vy € Z and e€3,...,¢ € {—1,41} define matrices B;

Bi(v1,...,v;€9,...,¢) inductively as follows.
V; 0
0 1
Ui 1
0 Bi_1 0 1
U1
mee () 8

U
0 1
v, 0 v, 0 ... wv; O V; Zn
0o 1 1 1 1 1 1—2, 1

where z; := 1(1 + ¢;). Furthermore let

Yy = diag(y1, y1, y2, Y2, - -, Y1, Y1)-

Proposition 2.1. Set v;y1 =0, then

l

J J
det(ViB, — Y, 'Bf) =1—2v1 + Y (v — vj41) (Z/f [T +u? Hy52€i> :
=2 1=2

j=1

The proof will be given in Sec. 3.

2.2. Ezplanation of the algorithm
Let A € Z[t1,...,tm] be a polynomial with the following properties
A(L,...,1) =1,
Aty tm) = At ..t 0.

Then using the usual multiindex notation we can uniquely write

Alty,.ootm) = Y cat™ +17%) + 1= > 2, o €Z

aczZm agzZ™

where ¢, = 0 for all but finitely many a and ¢(q,... 0y = 0.

605

Denote the a with ¢, # 0 by aq,...,a,. Pick a map p: {0,...,l} — Z™ with

the following properties.

(1) p(0) =(0,...,0),
(2) |p(t) —pt—1)|=1forallt=1,...,1,
(3) for each i =1,...,r there exists a t; € {1,...,1} such that p(¢;) = ;.
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It is easy to see that such a map always exists. Denote the ith unit vector
in Z™ by e;, the second condition says that p(t) = p(t — 1) + etes, for unique
e € {—-1,+1},ss € {1,...,m}.

Now define wy, = cp,) = co;, for i = 1,...,r and w; = 0 otherwise. Let
v; = Z_lj:i wj,j = 1,...,1. From Proposition 2.1 it follows now immediately that

for B= B(v1,...,v,¢€2,...,€¢) and Y := diag(ys,,...,Ys, ), we get

l J J
det(YB —Y7'BY) =1-2v1 + Y (vj — vj41) <y2 [Tz +vs2 Hy2> .
=2 =2

j=1
Using multiindex notation y = (y1,...,¥m), we can rewrite this as
1 1
ij(yp(J) +y POy 41— Zgwj = Z Cay® +y~2) 1 Z %,
Jj=1 Jj=1 aezZm aczZm

in particular for T := diag(ts,,...,ts,), we get
det(T)Fdet(TB — B') = Y ca(t* +17) +1— > 2¢, = A.
agZm agZ™

We can find a permutation matrix P such that

PTP ' =diag | t1,...,t1,. . tmsevstm | =T
—_———
ni MNom
for some ny,...,ny. In fact we can and will assume that P is of form
P(v11,v1,2,02,1,v22, -+ ,V1,1,0,2)
= P(Vs(1),1, Vo (1),2) Vo (2),15 Vor(2),25 - - - » Vor(1),15 Vor(1),2)
for some permutation o € Sj, i.e. P permutes pairs of coordinates. Note that

P! = P71 and det(P) = 1.

Theorem 2.2. The matriz A = PBP™' is a boundary link Seifert matriz of size
(n1,...,nm) and A(A) = A.

Proof. Note that B — Bt and hence A — At is a block sum of 2 x 2 matrices of the

1N - . . . . .
form (;01 io )7 in particular A is a Seifert matrix of size (nq,...,n,,), furthermore

A(A) = det(T) "7 det(TA — A') = det(T) 2 det(PTP ' PAP~' — PA'P™1)

1

= det(T) 2 det(TB — B*) = A. O

Using Proposition 1.2 we get the following corollary.

Corollary 2.3. Any polynomial A with A(1,...,1) = 1 and A(tfl, Lott) =
A(t1, ... tm) is the Alexander polynomial of a boundary link.
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It is clear that A depends on the map p, for example A is a (2] x 2[)-smatrix,
i.e. p determines the size of A. We will see in the next section that different paths
can in fact give non S-equivalent matrices.

2.3. Example
2.3.1. Minimality of matrices

Let A = €1,0 (t1+t171)+6171(tltz—‘rt;lt;l)—FCo’l(t%—‘rt; ) 17, then oy = ( )

(1,1), @3 = (0,1). The map p(0) := (0,0),p(1) :== (1,0),p(2) := (1,1),p(3) := (
satisfies the conditions on p. In this case

v

t1 =1, ly = 2, t3 =3,
81:1, 82:2, 83,:].7
€1 = ]., €2 = ]., €3 = —1,
w1 = C1,0, W2 = C1,1, w3 = €o,1,

vp =c¢10+ci1+co1, vV2=cC11+C1, V3= Col-

Then
(% 0 V2 0 V3 0 U1 0 V3 0 (%] 0
-1 1 0 1 0 1 -1 1 0 1 0 1
. (%) 0 (%) 1 V3 1 o V3 0 V3 0 U3 0
B=1 9101 01| ™A= o1 1111
U3 0 V3 0 V3 0 (%) 0 V3 1 (%) 1
o1 1 1 1 1 01 0 1 0 1

1 2 3
where we chose o = (| ; 2).

Using Proposition 1.3, it is easy to see that A forms an irreducible Seifert matrix
of size (2,1).

Consider
wy +wsz 0 —ws 0
A— —1 1 0 1
—ws3 0 we+wsz 0
0 1 —1 1
then

A(A) = wl(tl + tfl) + ’LUQ(tQ + t;l) + ’LUg(tth + tfltgl) +1-— 2(’LU1 —+ wo + ’LU3).

This shows that the algorithm does in general not produce a Seifert matrix of
minimal size for a given Alexander polynomial.

2.3.2. Uniqueness of result

A straight forward argument shows that for a knot Alexander polynomial A(t)
different choices of maps p will produce S-equivalent matrices. This is no longer
true in the case m > 1.
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Consider A = w(tity + t7't51) + 1 — 2w, w # 0. If we take maps p1, po with
p1(0) = (0,0),p(1) = (1,0) and p1(2) = (1,1) and pa(0) = (0,0),pa(1) = (0, 1)
and p2(2) = (1,1) then applying the algorithm we will get identical matrices B but
we have to use different permutations:

(12 (12
=\ 2) T N2 1)

We get Seifert matrices

w 1 w 0 0 1 w 1
0 1 1 1 0 1 0 1
A=y 1o 1| ™A=, 0w
0 1 0 1 1 1 0 1
Both matrices are minimal, but not block congruent, since det(Ai11) = w,

det(Az,11) = 0. Hence by Proposition 1.3, A; and As are not S-equivalent.

Recall that any boundary link Seifert matrix corresponds to an F,-link, we
therefore can construct non-isotopic F),-links with identical Alexander polynomials.
I do not know whether the matrices are S,,-equivalent, in particular whether the
corresponding boundary links are isotopic.

Using signature invariants one can show that these matrices are in fact not even
matrix cobordant (for a definition, cf. [10]), i.e. one can show that the corresponding
F,,-links are in fact not even F,,-cobordant.

3. Proof of Proposition 2.1

3.1. Proof of a special case of Proposition 2.1

In this section we will consider the case e = --- = ¢, = 1, we have to show that
l J J
det(Y}Bl — }/2713;) =1-2v; + Z(Uj - Uj+1) (1_‘[2412 + Hyﬂ) .
j=1 i=1 i=1

We will show how to compute the determinant, but we will give the matrices only
for the case [ = 4 to simplify the notation.
Consider Y, B, — Y, 'B:

—1 —1 —1 —1 —1
vi(y1 —yy ) Yy v2(y1 — vy ) 0 vz(y1 — vy ) 0 va(y1 —yy ) 0
1 —1 —1 —1
—y1 Y1 — Y, 0 Y1 — Yy 0 Y1 — Y, 0 Y1 — Y,
—1 —1 —1 —1 —1 —1
va(y2 — vy ) 0 v2 (Y2 — yg ) Y2 v3(y2 —yg ) Y2 — Yy va(y2 —yy ) Y2 — Yg
—1 —1 —1 —1 —1
0 Y2 — Yo —Ys Y2 — Yo 0 Y2 — Yo 0 Y2 — Yo
1 —1 —1 —1 —1
v3(y3 —yz ) 0 v3(ys —ys ) 0 v3(y3 —yz ) Y3 va(ys — Y3 ) Y3 — Y3
—1 —1 —1 —1 —1 —1
0 Y3 — Y3 Y3 — Y3 Y3 — Yz —Y3 Y3 — Yz 0 Y3 — Y3
—1 —1 —1 —1
va(ya —yy ) 0 va(ys —yy ) 0 va(ya —yy ) 0 va(ys —yy ) Y4
—1

-1 -1 —1 —1 —1 -1
0 Y4 — Yy Ya — Yy Ya — Yy Y4 — Yy Y4 — Yy —yy Ya — Yy
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We will first simplify the matrix to make the computation of the determinant
.1
easier. For ¢+ = 2,...,1 multiply the second row by % and subtract the result
1=Y

from the 2ith row, we get

—1 —1 —1 —1 —1
vi(y1 — vy ) Yy va(y1 —yy ) 0 vz (y1 —yy ) 0 va(yr —yy ) 0
—1 —1 —1 —1
—Y1 Y1 — Yy 0 Y1 — Y, 0 Y1 — Y, 0 Y1 — Y,
—1 —1 —1 —1 —1 —1
v2 (Y2 — vy ) 0 va(y2 — vy ) Y2 v3(y2 =Yg ) y2 — vy valy2 —yy ) Y2 — Yy
2 —1 —1
22 0 —yy ! 0 0 0 0 0
Y1 -y
—1 —1 —1 —1 —1
v3(y3 — vz ) 0 v3(ys — vz ) 0 v3(y3 — vz ) Y3 va(ys — vz ) Yz — Y3
—1
y1 Y3 7’/371 0 v3 — ys—l 0 _y3—1 0 0 0
Y1—Y;
—1 —1 —1 —1
va(ya —yy ) 0 va(ya —yy ) 0 va(ya —yy ) 0 va(ya —yy ) Ya
—1
Y4—Y —1 —1 —1
y1 2 0 Y4 — Yy 0 Y4 —yy 0 —y, 0
Y1—Yq

For i =1,...,0 — 1 subtract the (2i + 1)st column from the (2i — 1)st column and
fori=1-—1,...,1 subtract the 2ith column from the (2¢ + 2)nd column, we get

—1 — —1 —1 - —
wi(y1 —yy ) y walyr —yy ) —vi ' ws(yr — v D) 0 walyr —vi ") 0
—y1 y1—yy " 0 0 0 0 0 0
—1 —1 —1 —1
0 0 w2(y2 —yy ) Y2 w3(y2 —yy ) —vyy wa(yz —yy ) 0
—1
Yy2—Y —1 —1
ylﬁ + g 0 —Yy 0 0 0 0 0
1
—1 —1 —1
0 0 0 0  w3(ys—vyz ) y3 wa(ys—yz ) —Ys3
—1
ys—y 1 _
123 — (ys —y3 ) 0 Vs 0 —y3 " 0 0 0
Yy1—Y;
0 0 0 0 0 0 wilya—wvi") wa
—1
Yq4—Y - —
y1 22 (ya -y D) 0 0 0 ya 0 —yy ! 0
Yy1—Yq
where w; = v; — vjy1,¢ = 1,...,1 — 1, recall that v;4; = 0, hence w; := v;. For

—1
17Yi1

i = 2,...,0 multiply the (2¢ — 1)st row by % and subtract the result from

the (2¢ — 3)rd row, furthermore for i = 2,...,1 — 1 multiply the 2ith row by y;yi+1
and subtract the result from the (2i 4 2)nd row. An induction argument shows that
the result is a matrix D; which is inductively defined as follows.

wiyi—y ) oyt

-Dl - 1 )
it Y1 —Yp
-1, —1
D1 0 Yy yiiy_—glw
2
0 0
Dy = _ ,
g 0 0 wa(y2—y5 ") Y2
—y; 'ys " tyiye 0 e 0

y1—y;
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and forn =3,...,(

0 0
0 0
v, 2y, L)
In—1 n— n—2
Dn—l 0 yn—l*y;i1
0 Yo Yn = Yn—1Yn
=T
Yn—YUn
0 0
0 0 0 - 0 walyn—wn") Yn
_yfly;1+y1y§ """ yi_lyn 0 0 e 0 _ygl 0

y1—y;

Note that det(D;) = det(Y;B; — Y; ' Bf), we will now compute det(D;). For n =
2,...,l wedenote by D], (respectively, D!/) the matrix obtained from D,, by deleting
the first column and the (2n — 3)rd (respectively, (2n — 1)st) row. Define

det,, :=det(D,,), det], :=det(D.), det! :=det(D.).

Using the last row to compute det(D,,) we get

—1,-1 2 2
— + PR _
det,, = det,,—1 — wn(yn - yil) Y1 19 —1 Yn1bn
Y1 — Y
-1 1 -1 -1 _
X Yn—1(Yn—2 _?{”*Q)det;_l 4 Yn1¥n %’f—ly” det” ,|.
Yn—1 —Yp_1 Yn — Yn

We make the following easy observations:

"

det], = det.' _,

—1 R -1 1
detZ _ _y;1 (ynl(yTL? yn—2)det;71 n Yn—1Yn Yn—1Yn det” ) .

_ — —1
Yn—1 — Up Yn — Yn "

It follows that

—yr b g Ya_1Un
Y1 — Y1

det,, = det,_1 — wn(yn - yrjl)

Recall that we have to show that

l J J
det, =1 —2v; + Z(Uj — Uj+1) (1_[:%2 + Hy[2>
=1 =1

j=1

l l j J
= I—Qij+ij (Hyf+Hy[2> .
j=1 j=1 i=1 i=1
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The proof of the special case of Proposition 2.1 is complete once we show that

det; = wl(yf + yl_z) +1— 2w

-1, -1 2 2
— + ..... _
N o T Iy, — ) det!
Yr— U
=y..... y2 +yr? Yyt -2 forn=2,...,1.

The first equality follows from a simple computation. We now prove the second
equality by induction on n. For n = 1,2 this follows again from a direct computa-
tion. Now assume that the statement is true for all k& < n, then using the above
results we get

-1, -1 2 -1
_y y +y1y2.....y_ _
Lo 1 - 1yn(yn _ynl)detx
Y1 — Y
S N 11 R
=— " (g — g, ) dety
Y1—U
> yn—l(yn—Z _1yn—2)det;;_2 _ yn—l yn_—llyn det;{_l )
Yn—1 — ynfl Yn — Yn
Using the induction hypothesis, we get an expression in the five variables
Y1,Y5 Y2 5 Yn—2,Yn—1,Yn Which can be computed to equal y? - --- - y2 +

y12 ..... yT:Q _2

3.2. Proof of Proposition 2.1

Let €,...,¢ € {—1,4+1}. Denote by ¢ : Z[yfcl,...,ylil} — Z[ylil,...,ylil] the
ring homomorphism induced by ¢(y1) = y1 and ¢(y;) = y;',¢ = 2,...,[, denote
the induced map on May,xom (Z [ylil, .. .,ylﬂ]) by ¢ as well. Write Blea,...,€)
for B('U17 e, U1, €2, 000, 6[).

We see that if we multiply the (2¢ — 1)st and the 2ith row of Y;B(eg,...,¢) —
Y, 'B(ea,...,e)t by €, i =2,...,1, then we get (Y} B(1,...,1)=Y, ' B(1,...,1)!),
in particular the determinants are the same, i.e.

det(Y;B(ea,...,&) — Y, 'Bles,...,a)")

= p(det(V;B(1,...,1) =Y 'B(1,...,1)")

! J J
=p 1200+ (vj —vj41) (H Y7+ Hyﬂ)
Jj=1 i=1 i=1
l J J
=1-2v + Z(Uj —Vjy1) <yf I_Iyz26 + yl_Q Hyi_%l) .
j=1

=2 =2

This proves Proposition 2.1.
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